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Introduction to Modelling

Mathematical modelling, traditionally fundamental in Physics, has become a com-

mon practice in important branches of Ecology, Biology, Medicine and, even more

relevantly, in Economics and Finance. This success relies on the special flexibility

and the universality of mathematical tools, often capable of solving problems of

great complexity. All this is made possible by the computing power of the increas-

ingly sophisticated machines available today.

What is a mathematical model? How do we build it? A mathematical model is an

interface between the real world and the world of mathematical theories. Consider,

for instance, the price of a financial derivative and suppose we want find information

on its evolution. If we want to use a mathematical model, it is necessary first of all

to understand what are the factors (translated into mathematical variables) that

we consider essential and characteristic of the evolution. This is probably the most

delicate task. Then, we identify the fundamental relations between variables, that

are capable to describe their dynamics quantitatively. Usually, this process results

in several equations of various types, which constitute the mathematical model.

The next step is to analyze the model, extracting the information we require.

What is the credibility of a mathematical model? It depends on its efficiency,

which relies on the dichotomy between completeness and computability. Complete-

ness, in general, would require the consideration of a huge number of factors and

variables and the relationship between them, to be as realistic as possible; on the

other hand, the greater the number of variables and the more realistic the rela-

tions among these variables, the more complicated the model is, putting at risk

the computing capability. A good model realizes an efficient compromise, which

always needs a posteriori test on known cases, to check its reliability. In any case,

we have to keep in mind that a mathematical model (but any model describing

real phenomena as well) cannot have any claim of universality and should be used

cum granu salis. Some models allow quantitative analysis, for example the models

in Physics, Chemistry, Medicine and Finance; in other models, typically those in

Economics, the analysis can only be qualitative and it is basically used for testing

the influence of certain factors on the evolution of a given system.

Why do we use mathematical models? Some of their characteristics make them

particularly attractive: their low cost and flexibility, given the practically unlim-

ited possibilities of running repeated computer simulations, in order to describe the

trend of complex phenomena, otherwise incomprehensible. Sometimes mathemati-

cal models are the only instruments one can use; a clear example is the simulation
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of blood circulation in the so called Willis Circle, which guarantees the blood sup-

ply in both cerebral hemispheres. In this case, it is surely impossible to conduct

experiments in situ!

Using a computer, one should always keep a critical attitude, avoiding the be-

ginners naive declaration: “The computer said that, and so, that’s it.”

The models we will see in the first section are commonly used in applied science

and are formed by differential or difference equations or systems. We will present

the most elementary aspects of the theory (with some exceptions). Our aim is

to teach the readers to be able to interpret and analyze the (differentials and

difference) economics models they will encounter during their studies if not build

on their own. Since this is conceived as an elementary course, we will deal with

deterministic models only, where there are not random or stochastic terms.

1.1 Some Classical Examples

The mathematical models we will deal with are constructed by translating into

mathematical terms some general laws of evolution, combined with specific laws of

the phenomenon under description. We show the procedure using classical exam-

ples, that, at the same time, will help us to motivate the development of the theory

in the next chapters.

1.1.1 Malthus model

Historically, this is the first model in populations dynamics, proposed by Malthus1 in

1798. Consider an isolated population2 whose only factors of evolution are fertility

andmortality. We denote by () the number of individuals present at time  and we

want to study its evolution from the starting (conventional) time  = 0. Obviously,

() is an average value, which we can identify with a real number. Let  be the

fertility rate, that is the percentage of newly born individuals per unit of time (e.g.

per year), and let  be the mortality rate, that is the percentage of dead individuals

per unit of time; thus, in a time interval of length , the percentages of newly born

individuals and dead individuals are, respectively,  and .

Here the general law of evolution is simple: the relative growth rate of the number

of individuals in a time interval of live length  is a function of (− ).

One has to choose what kind of function to adopt. Malthus assumes that this

function is exactly (− ), so that, in mathematical terms, we have:

 ( + )−  ()

 ()
= (− ) (1.1)

The number  = −  is called the biological potential.

1Thomas Robert Malthus (1766-1834), British economist.
2Not necessarily a population of human beings: it could be, for instance, a virus population.
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We can now proceed with two different approaches, according to whether wish

to follow the evolution of  continuously in time or at regular time intervals. The

two approaches differ depending on whether we consider time as a continuous or a

discrete variable, respectively.

Continuous time. In the first case, we divide equation (1.1) by :

 ( + )−  ()


=  () 

and then we let → 0 We get:

0 () =  () (1.2)

which says that the (relative) instantaneous growth rate (0) is constant. Equa-

tion (1.2) is a first order differential equation since the unknown function  appears

in the equation together with its first derivative. We say that it is a linear equation

since it is a first degree polynomial in  and 0.
Can we solve (1.2) and determine the qualitative behavior of  ()? Solving the

differential equation means finding  =  (), defined at least for   0, which

makes (1.2) an identity. In our case, we can also find the set of all solutions, i.e.

the so-called general integral. Indeed, assume for the moment that  ()  0; then

(1.2) can be rewritten as

0 ()
 ()

=



ln () = 

whence, integrating both sides,

ln () =  + 

where  ∈ R is an arbitrary constant. Applying the exponential function to both
sides of the equality and letting  = , we finally get

 () = + =  ≡  (1.3)

Thus, the solution  has an exponential growth if   0 and an exponential decay

while   0. When  = 0, fertility and mortality balance and  is constant (figure

1.1).

The presence of the arbitrary constant  reveals that our model is not complete:

to determine the evolution quantitatively we need an additional information, which

in this case could be the the number of individuals at the initial time. Let us suppose

that

 (0) = 0  0 (1.4)

We use this information, that we call initial condition, to determine the value of 

in (1.3). If we set  = 0 in this equation, we find

0 = 
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FIGURE 1.1. Exponential behaviour in the Malthus model

and then we have the complete behavior of the population at every time:

 () = 0
 (1.5)

From this formula we may deduce some interesting information. For example, if

  0, how long does it take for the population to halve its initial value? Does the

halving time depend on the initial size?

Let  be the halving time. Then  ( ) = 02 and substituting in (1.5) we have

0

2
= 0



from which

 = − log 2




Therefore the halving time does not depend on the initial population but only on

its biological potential. We call this population average life.

Let us go back to (1.5) and suppose   0. We point out that, if 0  0, the

solution never vanishes, since we divided by  (). On the other hand, if  () ≡ 0, we

have again a solution of (1.2), corresponding to the zero initial condition: 0 = 0.

This solution is not negligible; indeed, since it is constant in time, it is called an

equilibrium solution. As we can see in figure 1.1, when   0, every other solution

asymptotically goes to zero, independently of its initial condition: the population

tends to extinction. If instead   0, for every initial condition0  0, even if very

small, the corresponding solution moves away from equilibrium: the population

increases very rapidly beyond every limit. In the first case we will say that the

equilibrium solution is asymptotically stable, in the second one that it is unstable.

The system ½
0 () =  ()

 (0) = 0

is called Cauchy problem. Our calculation says that, in this case, the solution exists

for every , it is unique and goes to zero or to infinity, as → +∞, whether   0

or   0 respectively.
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Finally, if we let the initial condition 0 in (1.5), or equivalently, the constant

 in (1.3), to vary among all real numbers we obtain the whole family of solutions,

called the general integral of (1.2). We know everything about this simple (and

important!) equation.

Discrete time. In the discrete time case, we check the evolution of the system

at fixed time intervals. We use as a time unit the interval between two consecutive

observations; then we have  ∈ N. Thus the state of our system is described by a

sequence  (0),  (1),  (2), ... . We write also 0, 1, 2 and, in general,  instead

of  (). Choosing  = 1 (the smallest possible interval) and placing it into (1.1),

we have

+1 −  = 

i.e.

+1 = (1 + ) (1.6)

Equation (1.6) links the state of the system at time +1 to the state at the previous

time ; for this reason it is called a (linear) one step or first order difference

equation. In this case too, the knowledge of the size of the population at the initial

time  = 0 allows us to determine the unique solution:

 = 0 (1 + )


(1.7)

Indeed, letting  = 0 into (1.6), we get 1 = (1 + )0 and, then, with  = 1, we

have

2 = (1 + )1 = (1 + )
2
0

Iterating this procedure, we obtain

 = (1 + )−1 = (1 + )
2
−2 = (1 + )

3
−3 = · · · = (1 + )


0

The zero solution corresponds to the initial condition 0 = 0; this is the unique

equilibrium solution. If we let the initial condition0 vary among all real numbers,

we get the family of all solutions of the equation.

In this case, discrete and continuous-time systems behave likewise, and their

solutions are described by a set of exponential functions; unfortunately, this is the

exception and not the rule.

Even in this case the analogy between the two cases is not complete, since they

exhibit some differences in the asymptotic behavior of the solutions. As in the

continuous-time case, if   0 then 1 +   1 and (1 + )

0 → +∞ when

→ +∞ (the zero solution is unstable). But, if   0 things are different: if   −2

then −1  1 +   1 and (1 + )

0 → 0 when  → +∞ (the zero solution is

asymptotically stable); if  = −2, then 1 +  = −1 and the solution is oscillating

between −0 and 0 (the zero solution is stable but not asymptotically stable),

while if   −2 then 1 +   −1 and  is oscillating and unbounded (the zero

solution is unstable).
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1.1.2 Logistic models

The Malthus model is too unrealistic. In this model, the external environment does

not affect the growth rate and, consequently, the (relative) growth rate is steady.

However, a bigger population entails fewer resources and this implies a smaller

growth rate. In 1845, Verhulst3 suggested a model in which the evolution law

predicts a survival threshold  , which the population cannot exceed. He supposed

that the relative growth rate of  in the time interval  linearly decreases as a

function of . Under these conditions, the evolution law can be written as:

 ( + )−  () =  ()

∙
1−  ()



¸
(1.8)

where  =  −  is the biological potential. Let us distinguish again between

continuous and discrete-time evolution.

Continuous time. We divide both sides of (1.8) by  and let → 0 We get:

0 () =  ()

∙
1−  ()



¸
 (1.9)

Equation (1.9) is a nonlinear first order differential equation. Although it is a

little more complicated than (1.1) it is still possible to exhibit an explicit formula,

representing the family of solutions and, in particular, the one satisfying the initial

condition

 (0) = 0.

We shall do this later on; here, we try to infer all possible information about the

behavior of the solutions by analyzing the structure of the equation. It is useful

to consider the differential equation as a relation converting the knowledge about

the state of the system at time , i.e.  (), into a growth rate (the slope of the

graph of  ()), i.e. 0 (), at the same time. Observe that the two factors  () and

[ −  ()]  are in competition: if  () starts near zero, then  −  () ∼ 

and 0 () ∼  ()  so that () increases exponentially. On the other hand, when

 () approaches  , the factor  −  () becomes smaller and smaller and lowers

the slope of  (), that becomes almost constant.

We observe that  () ≡ 0 is the equilibrium solution corresponding to the initial

condition 0 = 0 It is reasonable to think that it must be the unique solution

starting from zero. However, there is another equilibrium solution: the one starting

from the survival threshold  , and indeed,  () ≡ solves equation (1.9), as we

see by direct substitution.

How do the other solutions behave? Do they tend to extinction? Do they tend

towards the survival threshold? Do they tend to increase beyond every limit? In

other words, we want information on the asymptotic behavior of the state variable

for  → +∞ and in fact, this is what is required in many applications. To answer

3Pierre François Verhulst, 1804-1849.
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these questions, we have to analyze

lim
→+∞

 () .

Assume   0 and consider the solution starting from 0, with 0  0   .

From the differential equation, we have

0 (0) =  (0)

∙
1−  (0)



¸
= 0

∙
1− 0



¸
 0

hence the solution leaves the initial state with a positive slope. Until  () stays

between 0 and  , 0 () remains positive and  () is (strictly) increasing. Since

monotone functions have limits, we deduce that only three possibilities can occur

(figure 1.2).



’

(0)



3

1

2



’

(0)



33

11

22

FIGURE 1.2. Logistic model: which number gives the correct evolution?

1. lim→+∞  () =  0  

2. lim→+∞  () = 

3.  () reaches the level  in a finite time  :  ( ) =  .

We can immediately rule out case 1. Indeed, since the limit of  () is  0, from
the differential equation we would have

lim
→+∞

0 () =  0
∙
1−  0



¸
 0 (1.10)

But if a function and its derivative have both a horizontal asymptote, the limit of

the derivative has to be zero4, in contradiction to (1.10).

Case two seems to be the most reasonable: the population should tend to its

threshold level.

4We point out that the derivative of a function which is strictly increasing in (0+∞) and
having a horizontal asymptote, may have no limit . But if we also know that its derivative has a

limit, then the limit of the derivative must be zero. The reader can prove this as a useful exercise.
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But can we exclude case 3? We observe that if  () reaches the level  in a

finite time  , we have 0 ( ) = 0 and hence, thereafter  continues at the constant

level  . There is no clear contradiction. Furthermore, if we use a computer with a

time window sufficiently large, the answer would be the one sketched in figure 1.3,

which seems to strengthen the possibility of case 3.

Should we believe the computer or this case has to be explained in a less intuitive

way? To answer we need to solve explicitly the equation or, better5 , use some of

the theory we are going to develop later.

00

FIGURE 1.3. Computer graphic of continuous logistic with  = 1,  = 2, 0 = 05

As an exercise, we leave the reader to study of the asymptotic behavior of a

solution starting above the threshold level, i.e. such that  (0) = 0   , as well

as the case 0  0.

Discrete time. We now consider the discrete logistic model. As before, choosing

 = 1, from (1.8) we have

+1 =  + 

³
1− 



´
= (1 + )

µ
1− 

(1 + )


¶
which is a nonlinear difference equation of the first order. To write the equation in

a more readable form, let

 =
(1 + )


.

The equation for  is then

+1 =  (1− ) (1.11)

where  = 1 + .

5As we shall see, there are only a few differential equations that can be solved with elementary

techniques. Thus, in most cases, we have to use theoretical results to predict the behavior of the

solutions and interpret graphs generated by computers.
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The sequence  = 0 for every  (i.e. the sequence of zeros) is an equilibrium

solution. What can we infer from (1.11) concerning the other solutions? First of

all, is there another equilibrium solution? An equilibrium solution is constant, hence

+1 = . From (1.11) we get

+1 =  (1− ) = 

and

 (1− ) = 1

from which

 = 1− 1




This solution is between zero and one if   1 and therefore in this case there are

two equilibrium solutions. Let us check if the other solutions tends towards one of

the other two. If −1    0 then 0   = 1 +   1, and if  starts from 0
between zero and one, we immediately have

0  +1 =  (1− )    2−1  · · ·  0

and then  → 0 per → +∞. The zero solution is asymptotically stable.
Let now   0. Then   1 and the two factors  and (1− ) are in competi-

tion: the multiplication by  at each time step produces a rapid growth of , but

as soon as  approaches the level 1 the factor (1− ) becomes very small and pro-

duces the opposite effect. It is difficult to say a priori which one of the two factors

is going to dominate. Also, we point out that 1− could become negative and the
sequence would lose its (physical) meaning of an average size of a population.

To get a clue of what could happen, we use a computer to plot the points ( )

generated by the discrete logistic for different values of the parameter  In figure

1.4, the plots are obtained with 1 = 02, for  equal to 07 (circle), 26 (rhomb),

34 (cross), 4 (star).

0 2 4 6 8 10 12 14 16 18 20

1

FIGURE 1.4. Sensitivity of the discrete logistic with respect to the parameter 

As it is quite apparent, the discrete logistic shows a strong dependence on the

parameter  and rather unexpectedly a wide variety of asymptotic behaviors, in-
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cluding what is commonly called chaotic behavior.We shall describe later the theory

necessary to interpret the graphs in figure 1.4.

1.1.3 Phillips model

We now consider a continuous time model of macroeconomic type, in which the

level of the aggregate demand determines the national income. This demand should

be created partly by private initiatives and partly by the government, whose aim

is to reach a given level of national income.

Assume that we start at the desired level of income and, due to exogenous factors,

a decrease in demand occurs. The problem is to stabilize the aggregate demand by

means of suitable economic government policies, in order to restore the level of

income.

To construct an evolution model, denote by  =  () and  =  (), the

deviations of the national income and of the aggregate demand from the desired

levels, respectively. Since we are supposing that the initial product level is the

correct one, we have  (0) = 0

The model is constructed on the basis of the following assumptions:

() national income responds to an excess of aggregate demand over supply by

the law

 0 =  ( −  ) (1.12)

where   0 is a sensitivity coefficient;

() aggregate demand is a linear function of income

 = (1− ) −  (1.13)

The positive constant  encodes the action of the exogenous factors, and 1 − 

(0    1) is the marginal propensity towards consumption and investment.

By substituting (1.12) into (1.11) we find that, without the government action,

the evolution of  is determined by the differential equation:

 0 = − − , (1.14)

with the initial condition  (0) = 0. Equation (1.14) is linear and of the first order.

() The fluctuations of the economy can be brought under control by varying

the level of government expenditure , every time this falls under some level ∗
i. e.

0 =  (∗ −) (1.15)

where   0 is a (constant) speed of adjustment. We examine two kinds of ∗:

() ∗ is proportional to  :

∗ () = − ()  (  0) 
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() ∗ is proportional to the cumulative deficit of output below the desired level:

∗ () = −
Z 

0

 () 

Anyway, instead of (1.13) and (1.14), we have

 = (1− ) − +

and

 0 = − −  +  (1.16)

To get an equation in the unknown  only, we differentiate both sides of (1.16);

we find

 00 = − 0 + 0.

Using (1.15), we now have

 00 = − 0 +  (∗ −)

and, gaining  from (1.16), we obtain the basic equation of the model

 00 + ( + ) 0 +  − ∗ = − (1.17)

where ∗ depends on  according to formulas () or () 

Let us examine (1.17) in case (). It becomes:

 00 + ( + ) 0 +  ( + ) = − (1.18)

Since this equation is a first degree polynomial with respect to the unknown func-

tion  and to its first and second derivatives, we say that (1.18) is a second order

linear equation.

In case (), (1.17) becomes

 00 + ( + ) 0 +  + 

Z 

0

 ()  = −

Differentiating in order to get rid of the integral, we get:

 000 + ( + ) 00 +  0 +  = 0 (1.19)

Equation (1.19) is a third order linear equation.

Some interesting information about this model concerns the qualitative behavior

of a solution  as → +∞ depending on the parameters defining the model. We

will devote special attention to linear differential equations, in particular to those

with constant coefficients, as in Phillips model. For equations of this type it is also

possible to find an explicit formula describing their general integral.
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1.1.4 Accelerator model

This classical model (P.A. Samuelson, 1938) is an attempt to explain in a simpli-

fied way how expansion and recession cycles alternate in economic development.

Consider an economic system observed over a number of consecutive years. Denote

by  the national income and by  the consumption, both in year . The model

is based on the following three laws:

()  is a linear function of the previous period’s income:

 = −1 +  (1.20)

where  and  are propensity coefficients, 0    1 and   0.

() The investment  is a linear function of the consumption variations
6:

 = +  ( − −1)  (1.21)

with   0.

()  verifies the accounting identity (the level of production is chosen in order

to meet the demand on goods)

 =  + 

Inserting  from (1.21) and  from (1.20), we get:

 −  (1 + )−1 + −2 =  +  (1.22)

Equation (1.22) is a difference equation linking  to −1 and −2. Since the
left hand side is a first order polynomial in , −1 and −2 we say that (1.22) is
a second order linear equation (or a two steps equation). We will solve it and study

the evolution of  as → +∞ in chapter 5.

1.1.5 Evolution of supply

In this example we consider a simple model, which describes the price dynamics of

a product and its supply. At equilibrium, demand equals supply. Denote by  the

product price and by  the supply. Let  be the excess in demand, based on the

condition at equilibrium. The evolution model is built on the following hypotheses.

()  is a linear function of the price:

 () = −0 +  ()

with 0  0,   0.

() Growth rate of supply is proportional to the excess of demand:

0 () =  [−0 +  ()]

6The idea is the following: if for instance the consumer demand is growing, in order to meet

the future demand, it is expedient to expand the production capacity. The opposite is to be done

in case of contracting consumer demand.
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with   0.

() Producers tend to direct  () towards an optimal price e ()  according to

the law

 0 () = 
h e ()−  ()

i


where   0. In this way, if  ()  e () the price increases, while it decreases if

 ()  e ().

() Price e () is a linear function of supply:

e () =  −  () (1.23)

with   0,   0.

Plugging (1.23) into the equation for  0, we obtain the following evolution model
for  and  : ½

0 () =  ()− 0
 0 () = − ()−  () +

(1.24)

This is a system of two linear differential equations in  and  7 .

Let us look for equilibrium solutions

 () ≡ ∗,  () ≡  ∗.

Since 
0
() ≡ 0, 

0
() ≡ 0, substituting  () ≡ ∗,  () ≡  ∗ into the system

(1.24), we find ½
0 =  ∗ − 0
0 = −∗ −  ∗ +

This is an algebraic system in the two unknown ∗,  ∗, whose solution is

 ∗ =
0


, ∗ = −0


+






At this point the relevant questions are: what is the long time behavior of the other

solutions? Do this model predict convergence to equilibrium or a cyclic behavior,

with increases and decreases of price and supply?

We will answer to this questions in chapter 6.

7We point out that, differentiating the first equation, we get

00 =  0

From the second equation and from  = (0 + 0) , we obtain the second order equation in

 :

00 = −0 −  − 0 + 

Thus, it is possible to transform the system into a second order equation in one of the two unknown

functions only.
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1.1.6 Leslie model

This is a model for a population growth that accounts for the different ages of

individuals. Consider a population divided into disjoint age-sets of equal size. For

instance, the population can be divided into three sets: if  is the oldest age, the

individuals aged up to 3 (young individuals) constitute the first set; the second

set (adults) is composed by individuals aged between 3 and 23, and the third

set (elder individuals) by individuals over 23 years old. Choose 3 as the time

unit (time in which an individual is member of one of the three sets). Denote by

  and 

the number of individuals in the three sets at time , respectively.

At time  + 1, the “newly born” from every class enter the first class. Assume

that the number of newly born in each class is proportional to the size of the class.

In the second class we find the “survivors ” belonging to the first class at time 

and in the third the “survivors ” belonging to the second class at time . Let 

 and  be the birth-rate of the three classes, respectively, and  and  be the

survival-rates of the first two classes (people in the third class cannot outlive the

time interval). Thus the evolution of the population is governed by the following

system: ⎧⎨⎩ +1 =  +  + 
+1 = 
+1 = 

Denoting by p the vector of components   and , the system may be

rewritten in the form

p+1 = Lp

where

L =

⎛⎝   

 0 0

0  0

⎞⎠
is called (third order) Leslie matrix.

This is a linear homogeneous system of difference equations with constant coeffi-

cients. We will study this kind of models in chapter 8.

In this case, it is important to deduce the long term behavior of the population.

For instance, it is interesting to know whether the size of every class converges to

a constant equilibrium value eventually.

1.1.7 Lotka-Volterra predator-prey model

This celebrated model deals with a survival problem for two different species living

in the same habitat. One of them (the prey) constitutes the food supply for the

other (the predator).

In the years immediately after the First World War, a decrease of a species of

edible fish and an increase of its predator has been noticed in the Adriatic Sea
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waters. Unexpectedly, the absence of fishing activities during the war encouraged

an above average growth of the predators, and caused the opposite effect on the

prey. The question was put to the Italian mathematician Vito Volterra who solved

the problem using a model, which constituted the first mathematical model in

Ecology.

Volterra based his analysis on empirical information from biologists. The prey,

whose main nourishment was constituted by microorganisms (phytoplankton), do

not have survival problems, and their growth, without the presence of the predators,

would follow a Malthusian model. The predators nutrition only consists of the prey.

If isolated, their evolution would follow the Malthus model, but with a negative

biological potential, so that they would decrease exponentially to zero. Denoting

by

 () = the (average) number of prey

and by

 () = the (average) number of predators,

adopting a continuous-time model, we may write so far:

0 () =  () + ? and 0 () = − () + ?   0,   0.

The problem here is to model the interaction between the two species, assuming a

negligible influence of the environment.

Volterra assumes that the main factor which slows down the growth of the prey

and prevents the extinction of the predators is the (temporal) frequency of encoun-

ters among prey and predators. As a law for this frequency he adopts the following

formulas, for prey and predators, respectively:

− ()  () and  ()  ()   0,   0.

Thus, he deduces the following model:½
0 = − 

0 = − + 
     0 (1.25)

It is interesting to note that, more or less in the same period, the Polish chemist

Lotka descovered the same model in relation to a problem of chemical kinetic, in a

completely different contest. However, the analysis of Volterra was much deeper.

We now have a system of two equations, both non-linear with respect to the

unknowns  ()   ().

As in the supply evolution model, the relevant information is the following.

1. Are there equilibrium solutions (i.e. constant solutions)

 () ≡ ∗,  () ≡ ∗?

Since 0 () ≡ 0, 0 () ≡ 0, letting  () ≡ ∗,  () ≡ ∗ in (1.25), we find½
0 = ∗ − ∗∗

0 = −∗ + ∗∗.
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This is an algebraic system solved by

(∗ ∗) = (0 0) and (∗ ∗) =
³ 






´


Thus, we have the two equilibrium solutions

 () ≡ 0,  () ≡ 0

which is not interesting, and

 () ≡ 


,  () ≡ 


,

which represents a steady coexistence solution.

2. What is the long term behavior of the solutions? Does the model predict the

tendency to equilibrium or the extinction of one of the species? Or does it predict

a cyclic trend with “ups and downs ” for prey and predators?

Even if this system can not be solved with elementary techniques, we will answer

to these questions in chapter 7.

1.1.8 Time-delay logistic equation

A different form of the discrete logistic is the following second order equation

+1 =  (1− −1)   ≥ 1   0

The term −1 in the right-hand side denotes a time delay with respect to the
original logistic model. It is convenient to transform the equation into a 2 × 2

system, setting

 = −1  = 

Then we have ½
+1 = 
+1 =  (1− ) .

This is a system of two difference equations, which are quite difficut to study. The

only information easy to obtain is the existence of equilibrium solutions, that leads

solving the algebraic system ½
 = 
 =  (1− )

We find

( ) = (0 0) and ( ) =

µ
1− 1


 1− 1



¶


Observe that the second is meaningful only if   1. We will briefly examine the

asymptotic behavior of the other solutions in chapter 8.
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1.2 Continuous Time and Discrete Time Models

In the previous section we have considered mathematical models describing the

time evolution of a variable, called state variable. In this section, we will analyze

the structure of these models introducing also the appropriate terminology. We

start with the case in which the state variable is one-dimensional.

Continuous time models. The time variable  runs over an interval of the real

axis, which can often be identified with [0+∞). In this case the function

 7→  ()  ∈ [0,+∞)

describing the evolution of the state variable, is a real function of a real variable.

As we have seen in the examples,  can represent the consistency of a population

or the quantity of money available at a certain time, but the number of possibilities

is countless.

Discrete time models. On many occasions, a periodic monitoring of time is

more natural. In this case, if we use as time unit the time interval between two

subsequent “observations”, the variable  assumes integer values 0 1 2   . The

time unit in discrete models can be a year, a semester, a month, a day, etc.

The function describing the evolution of the state variable is a sequence, usually

denoted by

 7→   ∈ N
Characteristic ingredients of a dynamical model are:

() the dynamics, i.e. the evolution law of , that shows the connection between

the state variable and its growth rate;

() the initial condition, i.e. the value of the variable  at the initial time 0
(usually 0 = 0).

The information about the dynamics of the system is expressed through an

equation. In continuous time models we deal with differential equations, linking 

to the values of one or few derivatives. Instead, in discrete time models, we deal

with difference equations, linking the values of the state variable  at consecutive

times. The simplest cases are sketched in the following table.

Model

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
continuous time

½
dynamics

initial condition

0 () =  (  ())

 (0)

discrete time

½
dynamics

initial condition

+1 =  ( )

0

The equation 0 () =  (  ()) is a first order differential equation, since (only)

the first derivative of the state variable appears.

The equation +1 =  ( ) is a first order difference equation or a one step

difference equation, since it connects the state at a time  + 1 to the state at the
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earlier time . We expect that from () and () it is possible to deduce the entire

evolution.

In the last examples of the previous section, the state variable is the two-

dimensional vector ( ()   ()). In general, there are models describing the evolu-

tion of a -dimensional state variable, the vector state

x () = (1 ()  2 ()       ()) 

Also in this case we can distinguish between continuous and discrete models. In

continuous models, the evolution is described by a vector valued function

 7→ x ()

where  belongs to an interval8  ⊆ R. Instead, in discrete models, a sequence of
vectors

 7→ x,  ∈ N,
describes the evolution.

The dynamics, i.e. the evolution law of the vector state (1 2     ), is ex-

pressed by a system of differential equations or difference equations, respectively.

In the next section we establish a precise terminology.

1.2.1 Differential and difference equations

Differential equations

A differential equation is an equation where the unknown function appears together

with some of its derivatives (the unknown function and its derivatives must be

evaluated at the same point). The order of a differential equation is the order of

the highest derivative appearing in the equation.

In an ordinary differential equation the unknown is a function of one variable,

otherwise we have a partial differential equation9. A general ordinary differential

equation (ODE) of order  has the form


³
  ()  0 ()      () ()

´
= 0 (1.26)

where  is a function of +2 real variables. The independent variable  represents

time in dynamical models. In other types of model it could have different meanings,

like space, for instance. As such it is usually convenient to adopt a more appropriate

notation.

8Usually the interval [0+∞) 
9E.g., the equation




=

2

2


known as the diffusion equation, is a partial differential equation, since the unknown  is a function

of the variables  e .
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If equation (1.26) can be rewritten in the form

() () = 
³
  ()  0 ()      (−1) ()

´
(1.27)

where  is a function of + 1 real variables, we say that the equation is in normal

form. While we often write

() = 
³
  0     (−1)

´
we must remember that  and its derivatives are functions of time. We shall always

refer to equations in normal form.

We give the precise notion of solution. A solution (sometimes also called integral,

quite improperly) is a function  =  (), differentiable up to the order , satisfying

the equation in an interval  ⊆ R, i.e. such that

() () = 
³
  ()  0 ()      (−1) ()

´
∀ ∈  (1.28)

This definition has a local nature, since  is defined, a priori, in an interval, no

matter how small it may be. On the other hand, an important question is to

determine the largest possible interval of definition of a solution, to prepare for the

analysis of its asymptotic behavior.

The Cauchy problem for a differential equation of order  in normal form consists

of finding a solution of (1.27), satisfying the initial conditions

 (0) = 01 0 (0) = 02     (−1) (0) = 0

Linear equations represent an important class. Equation (1.27) is said to be

linear if  is a first degree polynomial with respect to  0     (). For instance,

0 =  + 1, 300 − 30 −  = 1, 000 = (log )− 32 + 1

are linear equations, while the following ones are nonlinear:

0 = 2, 00 = log , 000 =
√
00 + 40 + 1.

A general linear equation of order  has the form

0 ()() + 1()
(−1) + · · ·+ ()() = () (1.29)

When  () ≡ 0 the equation is homogeneous. For linear equation, the structure of

the family of solutions is known. If the coefficients  are constant, we can also write

explicitly the family of all solutions (general integral), as we shall see in chapter 4.

One important distinction is between autonomous and non autonomous equa-

tions. Equation (1.27) is autonomous if  does not depend explicitly on . We

emphasize that the function  appearing in equation (1.27) is a function of  + 1

independent variables, and, in general,  may be one of them. When  is not one of

the explicit arguments of  , the equation is autonomous.
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Malthus and Verhulst models involve autonomous equations. The following equa-

tions

0 = , 00 = 2
3
√
0 + + 

are non autonomous.

The difference between the two kinds of equation is easily seen by considering

the two simple equations

0 = 3 (autonomous) and 0 = 3 (non autonomous).

Suppose that at some time   = 10 Can we deduce the growth rate 0 from
this information? In the first case, we immediately find that 0 = 30, but in the

second case, we need to know also at which time the state  = 10 is assumed: the

information transfer

state 7→ growth rate

depends only on the state for autonomous equations, while it depends on state and

time for non-autonomous equations. As we shall see, this is an important difference.

Difference equations

The most general -steps difference equation (or of order ) can be written as

 (  +1     +) = 0 (1.30)

where  is a function of  + 2 real variables. If

+ =  (  +1     +−1) (1.31)

where  is a function of  + 1 variables, the equation is in normal form.

The order  is given by the difference between the highest and the lowest index

appearing in the equation. For instance, the equation

+2 + 2+1 − −1 + 1 = 0

is of order 3, since  + 2 is the maximum index,  − 1 is the minimum and their

difference is 3.

A solution is a sequence {} satisfying the equation for every  ∈ N (or for every
 ≥ 0, if 0 is the first index). In general, we select a solution by fixing the initial

data

0 1  −1

corresponding to the first  steps.

If  is a polynomial of degree one in  +1     + equation (1.30) is a linear

equation. Some examples of linear equations are:

+1 −  = 1, (log ) = −1

while

+1 = 2 , +1 − 
√
 + 2−1 = 0
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are nonlinear equations.

If  in (1.30) or  in (1.31) is independent of , the equation is autonomous.

Difference equations can be considered as the discrete version of differential equa-

tions. As we have done in introducing the Malthus and Verhulst models, we can

always transform a differential equation of first order into a difference one, by re-

placing 0 () by its “discrete equivalent”, i.e. the difference +1 −  As a rule,

we can transform a th order into a difference equation of order , substituting:

0 () −→ +1 − 
00 () −→ (+2 − +2)− (+1 − ) = +2 − 2+1 + 

000 () −→ +3 − 2+2 + +1 − (+2 − 2+1 + ) =

= +3 − 3+2 + 3+1 − 
...

...

() () −→
X

=0

(−1)


µ




¶
+−

We remark, however, that discrete models usually display a much more complicated

dynamics than the corresponding differential problems.

1.2.2 Systems of differential and difference equations

Suppose the time evolution of  real variables 1 2     is governed by the

system of  first order differential equation (in normal form):⎧⎪⎪⎪⎨⎪⎪⎪⎩
01 = 1 ( 1 2    )

02 = 2 ( 1 2    )
...

0 =  ( 1 2    ) 

(1.32)

Letting

x =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠  f =

⎛⎜⎜⎜⎝
1
2
...



⎞⎟⎟⎟⎠
where f :  ⊆ R+1 → R the system can be rewritten in the vector form

x0 = f (x)  (1.33)

This system expresses the dynamics, i.e. the evolution law of the state vector x.

A solution of (1.32) in the interval  is a vector valued function

ϕ = ϕ () 

whose components are defined and differentiable in  and satisfy the equations of

the system (1.32) for every  ∈ 
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As in the one dimensional case, the value of the vector state x at a time 0 is

often available in the applications. This leads to the Cauchy problem½
x0 = f (x)

x (0) = x0
¡
0 ∈  x0 ∈ R¢ 

obtained by coupling the system of equations with an initial condition.

If in (1.33) f is a linear function of the vector x the system is linear. A general

linear system of  equations has the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
01 = 11 ()1 + 12 ()2 + · · ·+ 1 () + 1 ()

02 = 21 ()1 + 22 ()2 + · · ·+ 2 () + 2 ()
...

0 = 1 ()1 + 2 ()2 + · · ·+  () +  () 

or

x0 = A ()x+ b()

if

A () =

⎛⎜⎜⎜⎝
11 () 12 ()    1 ()

21 () 22 ()    2 ()
...

...
. . .

...

1 () 2 ()     ()

⎞⎟⎟⎟⎠  b () =

⎛⎜⎜⎜⎝
1 ()

2 ()
...

 ()

⎞⎟⎟⎟⎠ 

When b()= 0, the system is said to be homogeneous. We will examine the general

integral of linear systems in chapter 6.

When f does not explicitly depend on , the system is autonomous. Chapter 7 is

devoted to the study of two-dimensional autonomous systems.

A system of  one-step difference equation in normal form can be written as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ( + 1) = 1 ( 1 ()       ())

2 ( + 1) = 2 ( 1 ()       ())
...

 ( + 1) =  ( 1 ()       ())

or in the vector forms

x ( + 1) = f (x ()) , x+1 = f (x) (1.34)

where f : N×R → R.
A sequence of vectors x is a solution of (1.34) if it satisfies (1.34) for every  ∈ N.
If f (x) is a linear function of x, the system is linear.

If f does not depend explicitly on time, the system is autonomous.
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Reduction of a -th order equation into a system of  first order equations

Every differential or difference equation of order  can be easily transformed into

a system of  first order equations. For instance, in section 1.1, we reduced the

discrete logistic equation with delay into a system of two difference first order

equations.

In the continuous case, consider the differential equation of order 

() = 
³
  0     (−1)

´
 (1.35)

We can reduce it into a system of  first order equation by setting

1 =  2 = 0     = (−1)

Then we obtain the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
01 = 2
02 = 3
...

0 =  ( 1 2    ) 

(1.36)

The -th order equation and the system are equivalent, in the sense that every

solution  () of (1.35) determine a vector³
 ()  0 ()      (−1) ()

´
which is solution of (1.36) and, vice versa, the first component 1 () of every

solution (1 ()  2 ()       ()) of (1.36) is a solution of (1.35).

Example 2.1. Consider the linear non homogeneous differential equation with

constant coefficients

00 + 20 + 2 =  () 

Setting 1 =  and 2 = 0 the equation is transformed into the system½
01 = 2
02 = −21 − 22 +  () 

(1.37)

or

y0 = Ay+ f ()

where

A =

µ
0 1

−2 −2

¶
and f () =

µ
0

 ()

¶


We have here an example of non homogeneous linear system with constant coeffi-

cients.
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Similarly, we can convert an th order difference equation into a system of  first

order equations. For instance, consider the th order linear equation

+ = +−1 + · · ·+ 2+1 + 1 + 

Setting

( +1     +−1)
>

= y = (1 ()  2 ()       ())
>

(1.38)

we get the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ( + 1) = 2 ()

2 ( + 1) = 3 ()
...

 ( + 1) = 11 () + 22 () + · · ·+  () + 

which may be rewritten in the vector form

y+1 = Ay + b

where

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0    0

0 0 1    0
...

...
...

. . .
...

0 0 0    1

1 2       

⎞⎟⎟⎟⎟⎟⎠  and b =

⎛⎜⎜⎜⎜⎜⎝
0

0
...

0



⎞⎟⎟⎟⎟⎟⎠ 

Example 2.2. Consider the equation

+2 − 2+1 + 2 = 0

and set µ

+1

¶
=

µ



¶


The equation is equivalent to the following linear homogeneous system with constant

coefficients ½
+1 = 
+1 = −2 + 2




