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This book is a mark left in the woods. It is a sign left by two travelers who 
have chosen every day to share a portion of their trip, a fun one. The woods 
are the tall trees of the concepts, the methods, and not last, the practice of 
financial markets. Their journey has been long but fast-paced. At one point, 
they have felt a need to share and leave a mark, to tell others that they had 
been in these woods and they have tried to sort their way through in a 
manner that they have enjoyed so much to invite others along the same 
path. Of course, the two travelers are us, the Authors, and this corner of the 
woods is about portfolio management. We hope that the sense of speed 
through a journey and the fun we had while writing together, continuously 
swapping ideas and mutual cheer ups will spring to life from the pages of 
our book. 
We are both aware that there is a chance that you, the Reader, may be us-
ing this textbook to follow one taught course, presumably at the MSc. level. 
This is the experience from which our joint effort stems as well. The au-
thors crossed paths in such an environment from different sides of the 
desk, but their paths soon aligned to one, shared direction. We hope that 
you will feel what our goal has been—to tell the important apart from the 
unimportant, the useful from the curiosity, the feasible from the convolut-
ed (albeit elegant). 
The least youthful (we like to see the glass half-full) of the two authors car-
ries a big debt for what he has learned from the more youthful about the 
real, everyday value of knowledge, its usefulness in practical situations, 
and a fresh taste for the simple and immediately applicable. On her turn, 
the most youthful of the two, has derived true inspiration from the enthu-
siasm, the passion, and the genuine curiosity that the least youngest still 
places after so many years in sharing his knowledge with students without 
forgetting that learning is a never ending process.  
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The book strives to avoid becoming one more piece in financial mathemat-
ics. Although one of the Authors stood at that gate holding an ax to prevent 
excesses, we cannot rule out that we may have been occasionally carried 
away. For the Readers who perceive being short of an adequate back-
ground, the references are classical, Simon and Blume (1994) and Wain-
wright and Chiang (2013) in mathematics, Mood, Graybill, Boes (1974) in 
statistics.* 
 
 
 

Manuela and Massimo 
 
 
 
 

 

                                                           
* Mood, Graybill, and Boes (1974), Introduction to the Theory of Statistics, McGraw Hill; 
Simon and Blume (1994), Mathematics for Economists, Norton & Co.; Wainwright and 
Chiang (2013), Fundamental Methods of Mathematical Economics, McGraw Hill. 

Additional resources are available online via MyBook: 
http://mybook.egeaonline.it 



List of Symbols and Acronyms 
(in order of first appearance in the book) 

HPR Holding period return 
Ri,t Return on an asset or index i 
CAGR Compounded annual growth rate 
MV Mean-variance 
Prob(A) Probability of event A 
E[·] Expectation (in population) 
μi Expectation of asset i (in population) 
Var[·] Variance (in population) 
σi2 Variance of asset i 
Cov[·, ] Covariance (in population) 
σi,j Covariance between assets i and j 
ρi,j Correlation coefficient of assets i, j 
ωi Weight of asset i 
N Number of assets in the asset menu 
Ri Return or payoff on asset/security i 
S Number of states in the discrete case 
EUT Expected utility theorem 
VNM Von-Neumann Morgenstern (felicity function) 
W Wealth 
CE Certainty equivalent 
DMU Decreasing marginal utility 
𝑝𝑝𝑖𝑖  Price of a good or service 
MU Marginal utility 
𝑥𝑥𝑖𝑖 Quantity demanded of a good or service 
H Zero-mean bet, gamble 
RRA Relative risk aversion 
ARA Absolute risk aversion function 
T Risk tolerance function 
CRA Relative risk aversion function 
Π Risk premium 
CER Certainty equivalent rate of return 
LRT Linear risk tolerance 
HARA Hyperbolic absolute risk aversion 
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CARA   Constant absolute risk aversion 
CRRA   Constant relative risk aversion  
LHS   Left hand side 
RHS   Right hand side 
GMV(P)  Global minimum variance (portfolio) 
FOC   First-order condition 
Rf   Return on the risk free asset 
CML   Capital market line 
DARA   Decreasing absolute risk aversion 
IARA   Increasing absolute risk aversion 
FOSD   First-order stochastic dominance 
FY(·)   Cumulative distribution function of asset/gamble Y 
CDF   Cumulative distribution function 
SOSD   Second-order stochastic dominance 
GARCH  Generalized autoregressive conditional heteroskedastic 
PCA  Principal component analysis 
CAPM   Capital asset pricing model 
𝑅𝑅𝑚𝑚,𝑡𝑡+1   Rate of return on the market portfolio 
SSR   Sum of squared residuals 
OLS   Ordinary least squares 
SD[·]   Standard Deviation 
ARMA   Autoregressive Moving Average (model) 
IP   Industrial production 
APT   Arbitrage pricing theory 
SMB   Small minus big 
HML    High minus low (book to market) 
WML   Winners minus losers 
IRRA   Increasing Relative Risk Aversion 
IID   Independent and identically distributed 
TWR   Time-weighted return 
NAV   Net asset value 
FMV   Fund/Manager/Vehicle 
SML    Security Market Line 
TR   Treynor ratio 
TAA   Tactical asset allocation 



1 

1 Introduction to Portfolio Analysis: 
Key Notions 

“Uncertainty cannot be dismissed so 
easily in the analysis of optimizing in-
vestor behavior. An investor who knew 
future returns with certainty would in-
vest in only one security, namely the 
one with the highest future return” 
(H.M. Markowitz, “Foundations of Port-
folio Theory”, 1991) 

Summary: – 1. Financial Securities. – 2. Choice Under Risky Situations. – 3. Sta-
tistical Summaries of Portfolio Returns. 

1 - Financial Securities 

1.1 Definition of financial securities 
Most people own a “portfolio” (i.e., a collection) of assets, such as money, 
houses, cars, bags, shoes, and any other durable goods that are able to retain 
value over time and that can be used to transfer (real) wealth and hence con-
sumption opportunities over time. In this book, we will focus primarily on a 
certain type of assets, i.e., financial securities. As is generally known, financial 
securities (or financial assets) can be thought of as a legal contract that repre-
sents the right to receive future payoffs—usually but not exclusively in the form 
of monetary cash flows—under certain conditions. For instance, when you buy 
the stocks of a company, you are acquiring rights on a part of the future profits 
of that company (generally distributed in the form of dividends, either in cash 
or shares of stock). Of course, when an asset just pays out money, such mone-
tary payoffs can be used to purchase goods and services subject to a standard 
budget constraint that forces a decision maker to spend only the available re-
sources (currently or in present value terms). Our seemingly vague reference 
to what we have cited as “certain conditions” is due to the fact that financial 
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securities are generally risky, i.e., they pay out money, goods, or services in dif-
ferent, uncertain states of the world, as we shall see extensively throughout the 
rest of the book.1 
Financial assets generally serve two main purposes:  

I. To redistribute available wealth across different states of the world, 
to finance consumption and saving; 

II. To allocate available wealth intertemporally, i.e., to allow an investor 
to save current income/wealth to finance future consumption or, on 
the opposite, to make it possible for her to borrow against her future 
incomes/wealth to finance current consumption. 

For instance, consider an investor who uses a part of her income from wages 
earned in one productive sector (e.g., banking) to buy stocks issued in an-
other sector (e.g., industrial companies such as in the automotive industry). 
This individual is thus making sure that her welfare is at least partially dis-
connected from the fortunes or mis-fortunes of the banking sector to partic-
ipate in the outlook of the automotive industry. At the same time, this very 
investor who reduces her consumption stream to save by purchasing auto-
motive stocks is financing her own future consumption, although the exact 
amount available will depend on the future, realized profitability of the sector.  
Nowadays there are a large number of different financial securities availa-
ble, such as stocks (equity), bonds, commodities, derivatives, investment 
(mutual, pension, hedge) funds, etc. A broad discussion of the specific char-
acteristics of each type of financial securities is beyond the scope of our book 
and can be found instead in many intermediate finance textbooks (see, e.g., 
Fabozzi and Markowitz, 2011). However, just to level the playing field in 
view of the rest of our work, in this section we offer a short review of how 
returns of financial assets should be computed. In the rest of the chapter we 
review other basic concepts that are necessary to understand the frame-
work of portfolio analysis. First, we clarify in what sense financial securities 
are risky and we explain how investors can deal with choice among alterna-
tive securities in such uncertain situations. Second, we discuss how returns 
                                                           
1 Throughout the rest of the book, unless stated otherwise, we shall not distinguish be-
tween the concepts of risk and uncertainty. Risk characterizes unknown events for 
which objective probabilities can be assigned; uncertainty applies to events for which 
such probabilities cannot be attributed, or for which it would not make sense to assign 
them because they cannot be replicated in any controlled way, thus rendering the cal-
culation of relative frequencies difficult. One simplistic way to think about this issue is 
to envision all the uncertainty that we shall deal with as risk. 
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and risk are generally measured and how these measures can be aggregated 
when securities are collected to form a portfolio. 
 
 
1.2 Computing the return of financial securities  
Consider first an asset that does not pay any dividends or coupon interest. The sim-
ple single-period return 𝑅𝑅𝑡𝑡  of this asset between time 𝑡𝑡 − 1 and 𝑡𝑡 is defined as  
 

                                                              𝑅𝑅𝑡𝑡 =
𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1

− 1,                                             (1.1) 

 
where 𝑃𝑃𝑡𝑡 is the price of the asset at time 𝑡𝑡 and 𝑃𝑃𝑡𝑡−1 is the price of the asset 
at time 𝑡𝑡 − 1. Therefore, an investor that has invested a monetary unit (e.g., 
one euro) at 𝑡𝑡 − 1 in this security will end up at time 𝑡𝑡 with 1 + 𝑅𝑅𝑡𝑡 . The re-
turn plus one is often referred to as gross return or, alternatively, the holding 
period return (HPR). If after the first period the investor reinvests her money 
from time 𝑡𝑡 to 𝑡𝑡 + 1, at the end of her holding period she will get (1 +
𝑅𝑅𝑡𝑡)(1 + 𝑅𝑅𝑡𝑡+1), where 𝑅𝑅𝑡𝑡+1 is the return between time 𝑡𝑡 and 𝑡𝑡 + 1. This way 
of aggregating simple gross returns over time generalizes to any possible 
time interval: the gross return between time 𝑡𝑡 − ℎ and 𝑡𝑡 is simply given by 
the geometric-style (in the sense that products are considered) product: 
 

   (1 + 𝑅𝑅𝑡𝑡:ℎ) = (1 + 𝑅𝑅𝑡𝑡)(1 + 𝑅𝑅𝑡𝑡−1) … (1 + 𝑅𝑅𝑡𝑡−ℎ+1) = �(1 + 𝑅𝑅𝑡𝑡−𝑖𝑖)
ℎ−1

𝑖𝑖=0

.  (1.2) 

 
Consequently, the net return over h periods, also known as compounded re-
turn, is simply equal to ∏ (1 + 𝑅𝑅𝑡𝑡−𝑖𝑖)ℎ−1

𝑖𝑖=1 − 1. However, it generally makes lit-
tle sense to discuss about returns without defining their investment hori-
zon. Conventionally, practitioners tend to express their returns on an annu-
alized basis, as this enhances comparability. For instance, consider the case 
in which you have invested your money for three years and you have earned 
a rate of return 𝑅𝑅 over this period. Based on formula (1.2), the annualized 
return 𝑅𝑅𝑎𝑎 (sometimes called compounded annual growth rate or CAGR) of 
your investment is simply equal to  
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                                              𝑅𝑅𝑎𝑎(3) ≡ ��(1 + 𝑅𝑅𝑖𝑖)
3

𝑖𝑖=1

�

1/3

− 1.                             (1.3) 

 
More generally, 𝑅𝑅𝑎𝑎(𝑛𝑛) ≡ [∏ (1 + 𝑅𝑅𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]1/𝑛𝑛 − 1. Clearly, it easier to compute 
arithmetic means than geometric ones. For this reason, it is also quite com-
mon to use continuously compounded returns, which are obtained from sim-
ple return aggregation in (1.2), when the frequency of compounding is in-
creased towards infinity, i.e., as if we could disinvest and reinvest our ac-
crued wealth at every moment. The continuously compounded return (also 
known as log-return) of an asset is simply defined as 𝑅𝑅𝑡𝑡𝑐𝑐 ≡ ln(𝑃𝑃𝑡𝑡/𝑃𝑃𝑡𝑡−1). The 
advantage of using continuously compounded returns is that the multi-pe-
riod return is very easy to compute as it consists of the sum of the log-re-
turns of each period: 
 

                                   𝑅𝑅𝑡𝑡:ℎ
𝑐𝑐 ≡ 𝑅𝑅𝑡𝑡−1𝑐𝑐 + 𝑅𝑅𝑡𝑡−2𝑐𝑐 + ⋯+ 𝑅𝑅𝑡𝑡−ℎ+1𝑐𝑐 = � 𝑅𝑅𝑡𝑡−𝑖𝑖𝑐𝑐

ℎ−1

𝑖𝑖=1
.         (1.4) 

 
The use of log-returns is widespread not only because they can be easily 
summed up to obtain multi-period returns, but also because their use sim-
plifies the modelling of statistical properties of return time-series. Unfortu-
nately, continuous compounding has a key drawback: while the return of a 
portfolio is equal to the weighted average of the simple asset returns, this 
statement does not hold true for log-returns, as the sum of logs is not equal 
to the log of the sum. However, when returns are measured on a short hori-
zon (e.g., daily) the difference between the portfolio continuously com-
pounded return and the weighted average of the log-returns of each asset is 
very small. In the rest of the book, we shall use simple returns when we are 
not interested in their time-series properties and log-returns in all other 
cases.  
Finally, for assets (generally stocks) that make periodic payments (e.g., div-
idend) the formula in (1.1) should be slightly modified:  
 

                                                            𝑅𝑅𝑡𝑡 ≡
𝑃𝑃𝑡𝑡 + 𝐷𝐷𝑡𝑡
𝑃𝑃𝑡𝑡−1

− 1,                                         (1.5) 
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where 𝐷𝐷𝑡𝑡  is the dividend paid at time t and 𝑃𝑃𝑡𝑡 is the ex-dividend price of the 
stock (i.e., the price of the stock immediately after the payment of the divi-
dend). Equivalently, the continuously compounded return of a stock that 
pays dividends is 𝑅𝑅𝑡𝑡𝑐𝑐 ≡ ln[(𝑃𝑃𝑡𝑡 + 𝐷𝐷𝑡𝑡)/𝑃𝑃𝑡𝑡−1].  
 
 
2 - Choices under Risky Situations 

2.1 Choices under uncertainty: a general framework 
In section 1.2, we have discussed how we can compute the realized returns 
of financial assets. However, we have noted that most financial securities 
have a fundamental characteristic: they are risky, meaning that their payoff 
depends on which of the K alternative states of the world will turn out to 
occur at a future point in time. The states are uncertain because they are not 
known in advance, when investors make their investment decisions (i.e., 
whether to buy, not to buy, and—when feasible—sell the securities that be-
long to the asset menu they face). However, at least under some conditions, 
we shall assume that investors are able to quantify such uncertainty on fu-
ture states using standard probability distributions and the entire apparatus 
that classical probability theory provides them with (a brief discussion of 
the properties of the distribution of returns is provided in the next section). 
We also assume that exactly one state will occur, though investors do not 
know, at the outset, which one, because the states are mutually exclusive. 
The description of each state is complete and exhaustive, in the sense that 
all the relevant information is provided to an investor to tackle the decision 
problem being studied. 
In spite of this rather rich structure imposed on the choice problem, the task 
that awaits us (or our investor) is a complex one and the optimal choice will 
result from three distinct sets of (interacting) factors: 

I. how an investor's attitude toward or tolerance for risk is to be con-
ceptualized and therefore measured; 

II. how risks should be defined and measured; 
III. how investors' risk attitudes interact with the subjective uncertain-

ties associated with the available assets to determine an investor's 
desired portfolio holdings (demands). 

First, we shall consider how the investors’ beliefs about future states may 
be expressed. In the following example, we show how standard probability 
theory can be used to capture the uncertainty on the payoffs of securities 
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through the notion that different states may carry different probabilities. By 
attaching a probability to each state, we shall be able to distinguish between 
a decision maker’s beliefs (expressed by probabilities) about which state 
will occur and preferences about how she ranks the consequences of differ-
ent actions. 
 
 

 
Example 1.1. The asset menu is composed of the following three securities, 
A, B, and C: 
 

State Security A  Security B  Security C 
Payoff Prob.  Payoff Prob.  Payoff Prob. 

i 20 3/15  18 3/15  18 3/15 
ii 18 5/15  18 5/15  16 5/15 
iii 14 4/15  10 4/15  12 4/15 
iv 10 2/15  5 2/15  12 2/15 
v 6 1/15  5 1/15  8 1/15 

 
Security B pays 18 monetary units (say, euros) in both states i and ii. There-
fore, the difference between these two states is not payoff-relevant to secu-
rity B. However, it is payoff-relevant in the case of security A, in the sense 
that this asset pays out 20 euros in state i and 18 euros in state ii. Note that 
in this example, we characterize securities through their payoffs, but in fu-
ture examples we shall equally use their period rate of return, computed as 
discussed in section 1.2. 
The table above also shows the (subjectively determined) probabilities of 
each of the states. Because the states of the economy should be uniquely de-
fined across the entire asset menu, the associated probabilities are simply 
repeated across different securities. 
Of course, the table above reports redundant information because for secu-
rities B and C, one can re-define the states to consist of payoff-relevant states 
only. For instance, for security B there are only three payoff-relevant states, 
which we can call “i+ii”, iii, and “iv+v”; in the case of security C, the payoff-
relevant states are i, ii, “iii+iv”, and v. 
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State Security A  Security B  Security C 
Payoff Prob.  Payoff Prob.  Payoff Prob. 

i 20 3/15  18 8/15  18 3/15 
ii 18 5/15   16 5/15 
iii 14 4/15  10 4/15  12 6/15 
iv 10 2/15  5 3/15  
v 6 1/15   8 1/15 

 
 

 
 
Example 1.1 illustrates the interplay among the three ingredients that we 
have listed above. First, the need to define and measure risk. For instance, if 
one takes notice of the potential returns, security A may be considered risk-
ier than C because the span, the range of variation of the payoffs of security 
A (from a minimum of 6 to a maximum of 20), exceeds that of security C 
(from a minimum of 8 to a maximum of 18). Second, the usefulness of pin-
ning down the concept of risk aversion. For instance, it is not immediately 
evident why a rational investor should prefer security C over security A (if 
any): on the one hand, security A threatens to pay out only 6 euros in state 
v; on the other hand, the same security achieves a very large payment of 20 
in state i.2 It is natural to ask what kind of investor would pay more for se-
curity C than for security A. Presumably such willingness would be moti-
vated by a desire to avoid the very low payoff of 6 that the latter security 
may yield. Third and finally, it is unclear how such inclinations against 
risk—however measured—may be balanced off in the light of the probabil-
ity distribution that characterizes different states. 
In fact, this state-preference framework is fruitfully employed as an abstract 
tool for understanding the fundamentals of decision-making under uncer-
tainty, but it is more special than it may first appear. For example, the set of 
states, S, is given exogenously and cannot be affected by the choices of the 
investors. In reality, many investment choices change the physical world 
and create chances for new outcomes and states of the world. For instance, 
a successful venture capital investment in cold fusion energy production 
will profoundly affect all other sectors and investment outlooks. Conse-
quently, the state-preference model is not as widely applicable as it 
                                                           
2 By construction, example 1.1 is perfectly symmetric: security C has a minimum pay-
ment of 8 that exceeds by 2 euros the minimum payment of security A; however, secu-
rity A has a maximum payment of 20 that exceeds by 2 euros the maximum payment of 
security C. Hence the question in the main text stands. 
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might at first seem, and this should be kept in mind.  
 
 
2.2 Complete and incomplete criteria of choice under uncertainty 
The primary role played by the state-preference framework is to dictate 
how a rational investor ought to select among the different securities in her 
asset menu. One important distinction of criteria of choice under uncer-
tainty, is their completeness: a complete criterion is always able to rank all 
securities or investment opportunities from top to bottom on the basis of 
their objective features. As such, complete criteria form a good basis for 
portfolio choice. For instance, an investor may (simplistically) decide to 
rank all available assets and to invest in some pre-determined fraction start-
ing from the top of the resulting ranking.3 The expected utility decision cri-
terion to be defined in chapter 2 will satisfy this completeness property. By 
contrast, an incomplete criterion suffers from the existence of potential (usu-
ally, empirically relevant) traded combinations of the primitive assets that 
cannot be ranked in a precise way. As we are about to show, the celebrated 
mean-variance criterion is unfortunately incomplete. Paradoxically, such an 
incompleteness represents the reason for its success. 
Although many other incomplete criteria can be defined (see Meucci, 2009, for 
a general framework), a first often referred to criterion is (strong) dominance:  
 
Dominance: A security (strongly) dominates another security (on a state-
by-state basis), if the former pays as much as the latter in all states of nature, 
and strictly more in at least one state. 
 
In the absence any further indications on their behavior, we will assume that 
all rational individuals would prefer the dominant security to the security 
that it dominates. Equivalently, dominated securities will never be de-
manded by any rational investor. Here rational means that the investor is 
non-satiated, that is, she always prefers strictly more consumption (hence, 
monetary outcomes that may be used to finance such consumption) to less 
consumption. 
However, the following example shows that the dominance criterion, alt-
hough strong, is highly incomplete.  
 

                                                           
3 Many “funds-of-funds” investment selection strategies are well known to be formally 
spelled out in this fashion, where the asset menu is composed by the (hedge or mutual) 
funds that can be selected. 
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Example 1.2. Consider the same asset menu, payoffs, and probabilities as in 
example 1.1: 
 

State Security A  Security B  Security C 
Payoff Prob. D Payoff Prob. D Payoff Prob. 

i 20 3/15 > 18 3/15 = 18 3/15 
ii 18 5/15 = 18 5/15 > 16 5/15 
iii 14 4/15 > 10 4/15 < 12 4/15 
iv 10 2/15 > 5 2/15 < 12 2/15 
v 6 1/15 > 5 1/15 < 8 1/15 

Clearly, as indicated by the signs in the “D” column (for dominance), the pay-
offs of security A dominate those of security B on a state-by-state basis. In 
this case, the exact probabilities that characterize the different states are not 
relevant. Even if one changes the probability distribution reported in the ta-
ble, the result will stick. However, this criterion is visibly incomplete: for in-
stance, security B does not dominate security C and, more importantly, se-
curity A does not dominate security C (and vice versa). Hence, neither secu-
rity A nor C is dominated by any other security, while security B is domi-
nated (by security A). A rational investor may then decide to select between 
assets A and C, ignoring B. However, she cannot find an equivalently strong 
and impartial rule to decide between security A and C, hence the criterion is 
incomplete. 

 
 
 
The strength of dominance is that it escapes a definition of risk. Indeed, to 
be able to resort to such a concept may be very useful. However, in general, 
a security yields payoffs that in some states are larger and in some other 
states are smaller than under any other state. When this is the case, the best 
known (and yet still incomplete, as we shall see) approach at this point con-
sists of summarizing the distributions of asset returns through their mean 
and variance: 

𝐸𝐸[𝑅𝑅𝑖𝑖] = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(
𝑆𝑆

𝑠𝑠=1

𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠 = 𝑠𝑠)𝑅𝑅𝑖𝑖(𝑠𝑠)                                (1.6) 

𝑉𝑉𝑠𝑠𝑃𝑃[𝑅𝑅𝑖𝑖] = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(
𝑆𝑆

𝑠𝑠=1

𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠 = 𝑠𝑠)�𝑅𝑅𝑖𝑖(𝑠𝑠) − 𝐸𝐸[𝑅𝑅𝑖𝑖]�
2,                 (1.7) 
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where i indicates a specific security of N and S is the number of states (e.g., 
5 in examples 1.1 and 1.2). The following example shows in intuitive terms 
how mean and variance could be used to rank different securities, on the 
grounds that variance can be used to measure risk. 
 
 

 
Example 1.3. Consider the same inputs as in examples 1.1 and 1.2: 
 

State Security A  Security B  Security C 
Payoff Prob.  Payoff Prob.  Payoff Prob. 

i 20 3/15  18 3/15  18 3/15 
ii 18 5/15  18 5/15  16 5/15 
iii 14 4/15  10 4/15  12 4/15 
iv 10 2/15  5 2/15  12 2/15 
v 6 1/15  5 1/15  8 1/15 

Mean 15.47  13.27  14.27 
Variance 16.78  28.46  8.46 

 
It is indeed the case that security C is less risky than security B.   

 
 
 
If we decided to summarize these return distributions by their means and 
variances only, both securities A and C would clearly appear more attractive 
than asset B as they have a higher mean return and a lower variance. We 
therefore say that both securities A and C dominate asset B in terms of a 
mean-variance dominance criterion. 
 
Mean-variance dominance: A security dominates another security in a 
mean variance (MV for short) sense, if the former is characterized by a 
higher expected payoff and a by a lower variance of payoffs. 
 
However, security A fails to dominate security C (and vice versa) in a mean-
variance sense. This occurs because security A has a higher mean than secu-
rity C has (15.47 > 14.27), but the former also yields a higher variance (16.78 
> 8.46). This shows that, as with to dominance, also the mean-variance is an 
incomplete criterion, that is, pairs of securities exist that cannot be simply 
ranked by this criterion.  
Clearly, because of its incompleteness, the mean-variance criterion can at 
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best only isolate a subset of securities that are not dominated by any other 
security. For instance, in example 1.3, security B, being dominated by both 
securities A and C, can be ruled out from the portfolio selection. However, 
neither security A nor C can be ruled out because they belong to the set of 
non-dominated assets. 
Implicitly, the MV dominance criterion commits to a definition that requires 
an investor to dislike risk and that identifies risk with variance. Because the 
criterion implies this need to define and measure both risk aversion and 
risk, the mean-variance dominance is neither as strong, nor as a general con-
cept as state-by-state dominance. In fact, we know from example 1.2 that 
while security A dominates state-by-state security B (and we now know that 
A also MV dominates B), security C does not dominate B on a state-by-state 
basis, while C MV dominates B.4 Moreover, this criterion may at most iden-
tify some subset of securities (as we shall see, portfolios) that are not domi-
nated and as such are “MV efficient”. We shall return to these concepts in 
chapter 3. 
 
 
3 - Statistical Summaries of Portfolio Returns 

In section 2, we have introduced the idea that the returns of most financial 
assets (and thus of portfolios of such assets) are random variables. A ran-
dom variable 𝑦𝑦 is a quantity that can take a number of possible values, 𝑦𝑦1, 
𝑦𝑦2, …, 𝑦𝑦𝑛𝑛 (and the case in which n diverges to infinity cannot be ruled out). 
The value that the random variable will assume is not known in advance, 
but a probability 𝜋𝜋𝑖𝑖 is assigned to each of the possible outcomes 𝑦𝑦𝑖𝑖. The 
probability 𝜋𝜋𝑖𝑖 can be (does not have to be) thought of as the frequency with 
which one would observe 𝑦𝑦𝑖𝑖 if the experiment of observing the outcome of 
𝑦𝑦 could be repeated an infinite number of times. 
We have already seen that the distribution of asset returns is often (and yet 
incompletely) characterized through their means and variances. In (1.6) and 
(1.7), we have shown how to compute the expected (or mean) return of an 
asset and its variance, respectively.5 However, because we are also (mainly) 
                                                           
4 Although our example does not show this feature, it is possible to build cases in which 
one asset dominates another on a state-by-state basis, but not in MV terms. This means 
that just as MV dominance does not imply state-by-state dominance, also state-by-state 
dominance fails to imply MV dominance. The two are merely different criteria. 
5 In the rest of the book, unless otherwise specified, we shall use the terms mean and 
expected return interchangeably to indicate the average value obtained by considering 
the probabilities as equivalent to frequencies. 
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interested in the risk-return profile of portfolios of assets, we now discuss 
how to aggregate the statistics of the individual assets to compute a portfo-
lio mean and variance. Indeed, a portfolio is simply a linear combination of 
individual assets and, as a result, its return, 𝑅𝑅𝑃𝑃, is a random variable whose 
probability distribution depends on the distribution law(s) of the returns of 
the assets that compose the portfolio. Consequently, we can deduce some of 
the properties of the distribution of portfolio returns by using standard re-
sults regarding linear combinations of random variables. In particular, in 
what follows we focus on two-parameter distributions (sometimes called 
elliptical), of which the normal Gaussian distribution family represents the 
most important case, both theoretically and practically. 
For instance, assume that we know that the returns 𝑅𝑅𝐴𝐴 and 𝑅𝑅𝐵𝐵 of two secu-
rities, A and B, are jointly normally distributed and that their means and var-
iances are:  
 

𝜇𝜇𝐴𝐴 ≡ 𝐸𝐸[𝑅𝑅𝐴𝐴],     𝜎𝜎𝐴𝐴2 ≡ 𝑉𝑉𝑠𝑠𝑃𝑃[𝑅𝑅𝐴𝐴] 

𝜇𝜇𝐵𝐵 ≡ 𝐸𝐸[𝑅𝑅𝐵𝐵],     𝜎𝜎𝐵𝐵2 ≡ 𝑉𝑉𝑠𝑠𝑃𝑃[𝑅𝑅𝐵𝐵].                                  (1.8) 

 
Clearly, given these inputs, we can easily compute 𝜎𝜎𝐴𝐴 and 𝜎𝜎𝐵𝐵, the square 
roots of the variances of the two assets, which are called standard deviations 
or, alternatively, volatilities. Yet, this information is not sufficient to compute 
all the required statistics characterizing the distribution of portfolio returns, 
and in particular portfolio variance, because asset returns are in general 
correlated, that is, they tend to show some form of linear dependence which 
goes to increase/decrease portfolio volatility above/below the variability 
justified by individual assets. For this reason, we need to introduce the con-
cepts of covariance and of correlation coefficient. 
The covariance 𝜎𝜎𝐴𝐴𝐵𝐵  between two securities, A and B, is a scaled measure of 
the linear association between the two assets and it is computed as follows: 
 

                   𝜎𝜎𝐴𝐴𝐵𝐵 ≡ 𝐶𝐶𝑃𝑃𝐶𝐶�𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵� = 𝐸𝐸��𝑅𝑅𝐴𝐴,𝑡𝑡 − 𝐸𝐸[𝑅𝑅𝐴𝐴]��𝑅𝑅𝐵𝐵,𝑡𝑡 − 𝐸𝐸[𝑅𝑅𝐵𝐵]��.             (1.9) 

 
The sign of the covariance reveals the kind of (linear) relationship that char-
acterizes two assets. If 𝜎𝜎𝐴𝐴𝐵𝐵> 0, the returns of the two securities tend to move 
in the same direction; if 𝜎𝜎𝐴𝐴𝐵𝐵< 0, they tend to move in opposite directions; 
finally, if 𝜎𝜎𝐴𝐴𝐵𝐵= 0 the returns of the two securities are linearly independent 
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(we also say they are uncorrelated). Intuitively, the covariance has to satisfy 
the following inequality:  
 

                                                             |𝜎𝜎𝐴𝐴𝐵𝐵| ≤  𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵 .                                            (1.10)  

 
Indeed, one can demonstrate that the covariance of an asset with itself is 
simply equal to its variance, 𝐸𝐸�(𝑅𝑅𝐴𝐴,𝑡𝑡 − 𝐸𝐸[𝑅𝑅𝐴𝐴])2�; consequently, when two as-
sets are perfectly correlated and therefore not distinguishable in a linear 
sense, then 𝜎𝜎𝐴𝐴𝐵𝐵  = 𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵. 
Looking at formula (1.9), it is evident that covariance is affected by the over-
all variability of the two assets, what statisticians call the scales of the two 
phenomena under consideration, in particular their standard deviations. As 
a result, if we were to rank pairs of securities based on the strength of their 
relationships, we would find it difficult to compare their covariances. For 
this reason, we usually standardize the covariance dividing it by the product 
of the standard deviations of the two assets: 
 

 𝜚𝜚𝐴𝐴𝐵𝐵 =
𝜎𝜎𝐴𝐴𝐵𝐵
𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵   .                                                  (1.11) 

 
The coefficient 𝜚𝜚𝐴𝐴𝐵𝐵 is called correlation coefficient and it ranges from −1 to 
+1, as a result of the covariance bound stated in (1.9). A value of +1 indi-
cates a perfect positive linear relationship between two assets, while −1 im-
plies a perfect negative relationship between them. If two assets are com-
pletely linearly independent, they will display a correlation coefficient equal 
to 0. In this latter case, knowledge of the value of one variable does not give 
any information about the value of the other variable, at least within a linear 
framework.6 
Now we have defined all the elements that allow us to compute the neces-
sary mean-variance portfolio statistics. For the time being, we will take the 
values of the means, variances, and covariances of asset returns as given and 
show how these map in the mean and variance of portfolio returns. Later in 

                                                           
6 Our emphasis on the fact that correlation just captures the strength of linear associa-
tion may be best understood considering the following example: 𝑅𝑅𝐴𝐴,𝑡𝑡 =  𝑅𝑅𝐵𝐵,𝑡𝑡

2 +
𝜂𝜂𝑡𝑡 . Clearly, securities A and B are strongly associated according to a quadratic function. 
Yet it is easy to verify that 𝐶𝐶𝑃𝑃𝐶𝐶[𝑅𝑅𝐴𝐴,𝑅𝑅𝐵𝐵] = 0, i.e., the linear association between the two 
return series is zero. 
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the book (chapter 5) we will address how these can be empirically es-
timated. 7 
 
 
3.1 Portfolio mean 
The computation of the mean of portfolio returns is relatively easy: the re-
turn of a portfolio simply consists of the sum of the returns of the compo-
nents weighted by the fraction of wealth that is invested in each asset. For-
tunately, the expected value operator enjoys a property called linearity 
which states that the expected (or mean) value of a sum of random variables 
is equal to the sum of the expected values of the random variables them-
selves; in addition, the expected value of a scalar multiple of a random vari-
able is equal to the scalar coefficient applied to the expected value. Conse-
quently, if 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑁𝑁 are random variables representing the returns of N 
securities that compose a portfolio, 𝜇𝜇1 ≡ 𝐸𝐸[𝑅𝑅1,𝑡𝑡],𝜇𝜇2 ≡ 𝐸𝐸[𝑅𝑅2,𝑡𝑡], … , 𝜇𝜇𝑁𝑁 ≡
𝐸𝐸[𝑅𝑅𝑁𝑁,𝑡𝑡] are their expectations, and 𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁 are the weights of each se-
curity in the portfolio (expressed as a proportion of total wealth), then the 
portfolio mean is equal to: 
 

𝜇𝜇𝑃𝑃 =  𝐸𝐸[𝑅𝑅𝑃𝑃] = �ω𝑖𝑖𝜇𝜇𝑖𝑖

𝑁𝑁

𝑖𝑖=1

.                                   (1.12) 

 
To be more precise, consider the case of a portfolio consisting of the two 
securities A and B defined in (1.8), with weights 𝜔𝜔𝐴𝐴 and 𝜔𝜔𝐵𝐵, respectively. 
The mean value of the portfolio can be easily computed as follows:  
 

   𝐸𝐸[𝑅𝑅𝑃𝑃] = 𝐸𝐸[𝜔𝜔𝐴𝐴𝑅𝑅𝐴𝐴 + 𝜔𝜔𝐵𝐵𝑅𝑅𝐵𝐵] = 𝜔𝜔𝐴𝐴𝐸𝐸[𝑅𝑅𝐴𝐴] + 𝜔𝜔𝐵𝐵𝐸𝐸[𝑅𝑅𝐵𝐵] = 𝜔𝜔𝐴𝐴𝜇𝜇𝐴𝐴 + 𝜔𝜔𝐵𝐵𝜇𝜇𝐵𝐵.  (1.13) 

 
The following example makes these simple concepts more concrete. 
  

                                                           
7 It is important to recognize that the estimates that are obtained from actual data for 
means, variances, and covariances are the observable counterparts of unobservable the-
oretical concepts. Estimates of the mean and of the covariance matrix can be obtained 
through a variety of methods (estimation based on past data is just one common exam-
ple). The way these estimates are constructed is addressed in chapter 5. 
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Example 1.4. Consider the two stocks A and B described below: 
 

 
Market Condition Stock A  Stock B  

Return Prob.  Return Prob.  
Bull 12.00% 25%  6.00% 25%  

Normal 8.00% 50%  1.50% 50%  
Bear -7.00% 25%  -1.00% 25%  
Mean 5.25%  2.00%  

For instance, the expected return of a portfolio composed by 30% of security 
A and 70% of security B is computed as follows:  

𝜇𝜇𝑃𝑃 = 𝜔𝜔𝐴𝐴𝜇𝜇𝐴𝐴 + 𝜔𝜔𝐵𝐵𝜇𝜇𝐵𝐵 = 30% ×  5.25% + 70% ×  2.00% = 2.98% 
   

As a portfolio can be composed of a large number of assets, it may often be 
convenient to use a more compact matrix notation. If we indicate with 𝝎𝝎 the 
𝑁𝑁 ×  1 vector containing the weights of the N securities that compose the 
portfolio and with 𝝁𝝁 the 𝑁𝑁 ×  1 vector of mean returns of the assets, then 
equation (1.12) can be rewritten as follows: 
 

                                                                𝜇𝜇𝑃𝑃 = 𝝎𝝎′𝝁𝝁.                                                 (1.14) 

 
 
3.2 Portfolio variance and standard deviation 
As already pointed out, the computation of portfolio variance is a bit more 
complex than the calculation of its mean as it requires knowledge of the co-
variances between each pair of asset returns. Following the standard defini-
tion of variance: 

                       𝜎𝜎𝑃𝑃2 = 𝐸𝐸[(𝑅𝑅𝑃𝑃 − 𝜇𝜇𝑃𝑃)2] = 𝐸𝐸 ���𝜔𝜔𝑖𝑖𝑅𝑅𝑖𝑖 −�𝜔𝜔𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝜇𝜇𝑖𝑖�

2

�                

= 𝐸𝐸 ���𝜔𝜔𝑖𝑖(𝑅𝑅𝑖𝑖 − 𝜇𝜇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

���𝜔𝜔𝑗𝑗(𝑅𝑅𝑗𝑗 − 𝜇𝜇𝑗𝑗)
𝑁𝑁

𝑗𝑗=1

��      

                           = 𝐸𝐸 ��� 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗(𝑅𝑅𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑅𝑅𝑗𝑗 − 𝜇𝜇𝑗𝑗)
𝑁𝑁

𝑖𝑖,𝑗𝑗=1

�� = � 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑖𝑖,𝑗𝑗=1

,   (1.15) 



16   ESSENTIALS OF APPLIED PORTFOLIO MANAGEMENT 
 

where 𝜎𝜎𝑖𝑖,𝑗𝑗 is the covariance between asset i and asset j; as already discussed, 
the covariance of an asset with itself is simply equal to its variance. Note that 
also the variance formula can be rewritten using matrix notation:  

 

                                                              𝜎𝜎𝑃𝑃2 = 𝝎𝝎′𝚺𝚺𝝎𝝎,                                               (1.16) 

 
where 𝝎𝝎 is again the 𝑁𝑁 ×  1 of the weights and 𝚺𝚺 is the so-called variance-
covariance matrix, which is an 𝑁𝑁 ×  𝑁𝑁 matrix whose main diagonal ele-
ments are the asset variances while the off-diagonal elements are the re-
spective asset covariances. To clarify, 𝚺𝚺 is a symmetric, positive definite ma-
trix structured as follows:  
 

 

⎣
⎢
⎢
⎡ 𝜎𝜎1

2 𝜎𝜎1,2 ⋯ 𝜎𝜎1,𝑁𝑁

𝜎𝜎2,1 𝜎𝜎22 ⋯ ⋮
⋮ ⋮ ⋮ ⋮

𝜎𝜎𝑁𝑁,1 ⋯ ⋯ 𝜎𝜎𝑁𝑁2 ⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡ 𝜎𝜎1

2 𝜎𝜎1,2 ⋯ 𝜎𝜎1,𝑁𝑁

𝜎𝜎1,2 𝜎𝜎22 ⋯ ⋮
⋮ ⋮ ⋮ ⋮

𝜎𝜎1,𝑁𝑁 ⋯ ⋯ 𝜎𝜎𝑁𝑁2 ⎦
⎥
⎥
⎤
.           (1.17) 

 
The second matrix clearly reflects the symmetric property of covariances 
and variances. Positive definiteness implies that for all N-component real 
vectors 𝒙𝒙, 𝒙𝒙′ 𝚺𝚺𝒙𝒙 > 0. Clearly, because the vector of weights 𝝎𝝎 is a just a spe-
cial case of such a 𝝎𝝎, it will be that 𝜎𝜎𝑃𝑃2 = 𝝎𝝎′𝚺𝚺𝝎𝝎 > 0. 
To make the notion of portfolio variance more concrete, we come back to 
investigate in depth, a portfolio composed of only two stocks, A and B. In this 
application, the formula to compute portfolio variance simplifies to  
 

                                             𝜎𝜎𝑃𝑃2 =  𝜔𝜔𝐴𝐴2𝜎𝜎𝐴𝐴2 + 𝜔𝜔𝐵𝐵
2𝜎𝜎𝐵𝐵2 + 2𝜔𝜔𝐴𝐴𝜔𝜔𝐵𝐵𝜎𝜎𝐴𝐴𝐵𝐵,                       (1.18) 

 
which can also be rewritten as 
 

𝜎𝜎𝑃𝑃2 =  𝜔𝜔𝐴𝐴2𝜎𝜎𝐴𝐴2 + 𝜔𝜔𝐵𝐵
2𝜎𝜎𝐵𝐵2 + 2𝜌𝜌𝐴𝐴𝐵𝐵𝜔𝜔𝐴𝐴𝜔𝜔𝐵𝐵𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵,                   (1.19) 

 
where 𝜎𝜎𝐴𝐴𝐵𝐵 = 𝜌𝜌𝐴𝐴𝐵𝐵𝜎𝜎𝐴𝐴𝜎𝜎𝐵𝐵 . 
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Example 1.5. Consider again the two stocks mentioned in Example 1.4: 
 

Market Condition Stock A  Stock B  
Return Prob.  Return Prob.  

Bull 12.00% 25%  6.00% 25%  
Normal 8.00% 50%  1.50% 50%  

Bear -7.00% 25%  -1.00% 25%  
Mean 5.25%  2.00%  

Variance 0.0053  0.0006  
Standard Deviation 7.26%  2.52%  

Covariance 0.0015  
Correlation coefficient 0.83  

 
For instance, the variance of a portfolio composed of 30% of security A and 
70% of security B is computed as follows  

𝜎𝜎𝑃𝑃2 =  𝜔𝜔𝐴𝐴2𝜎𝜎𝐴𝐴2 + 𝜔𝜔𝐵𝐵
2𝜎𝜎𝐵𝐵2 + 2𝜔𝜔𝐴𝐴𝜔𝜔𝐵𝐵𝜎𝜎𝐴𝐴𝐵𝐵                                                                                  

= 0.302×0.0053 + 0.702×0.0006 + 2×0.30×0.70×0.0015
= 0.0014. 

Clearly, the same result holds if we use matrix notation: 

𝜎𝜎𝑃𝑃2 =  [0.30 0.70] × �0.0053 0.0015
0.0015 0.0006� × �0.30

0.70� = 0.0014. 

Given such variance, it is also easy to compute also the standard deviation 
(or volatility) of the portfolio, which is simply equal to its square root: 

𝜎𝜎𝑃𝑃 = √0.0014 = 0.0378 = 3.78%. 
Now consider a new asset, let’s call it stock C, with the characteristics de-
tailed below:  
 

Market Condition Stock C 
Return Prob. 

Bull -2.00% 25% 
Normal 3.50% 50% 

Bear 3.00% 25% 
Mean 2.00% 

Variance 0.0005 
Standard Deviation 2.32% 
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This stock has a negative covariance (hence, correlation) with both stock A 
and stock B. In particular, stock B and stock C have a covariance equal to      
−0.0005. Consequently, an equally weighted portfolio of stock B and C will 
have mean, variance, and standard deviation as computed below:  

𝜇𝜇𝑃𝑃 = 0.50 × 2.00% + 0.50 × 2.00% = 2.00% 
                      𝜎𝜎𝑃𝑃2 = 0.502 × 0.0006 + 0.502 × 0.0005 + 2 × 0.50 × 0.50

× (−0.0005) = 0.00004 
𝜎𝜎𝑃𝑃 = √0.00004 = 0.61%.                                         

Noticeably, this portfolio has a similar mean but a considerably lower risk 
(as expressed by the standard deviation) than both its component stocks. 
This is a consequence of the high negative correlation between the two assets:  

𝜌𝜌𝐵𝐵𝐵𝐵 =
𝜎𝜎𝐵𝐵,𝐵𝐵

𝜎𝜎𝐵𝐵𝜎𝜎𝐵𝐵
=

−0.0005
0.0252 × 0.0232

= −0.88. 

The result is even more intuitive if we look at what happens when the mar-
ket enters a bear regime. An investor holding the equally weighted portfolio 
defined above loses 1% of the wealth invested in stock B, but gains 3% on 
stock C. Overall, she gains 1% on her total wealth. Conversely, in a bull re-
gime, she gains 6% on stock B, but loses 2% on stock C, with a total return 
of 2%. It is obvious that this investor would never lose money, while an in-
vestor holding only stock B or C would experience a negative return in some 
regimes. In practice, stock C provides a hedge to stock B in a bear regime 
and vice versa in a bull regime. As a result, the portfolio has a similar mean 
but a considerably lower risk than each of the two stocks, a point that we 
are about to explore in depth. 

 

 
 
An analysis of the formula of portfolio variance leads us to a natural discovery 
of the concept of diversification. To illustrate this in the simplest and starkest 
set up, consider an equally weighted portfolio of N stocks (consequently, the 
weight assigned to each stock in the portfolio equals 1/N). In this case, formula 
(1.15) can be re-written as follows, 

                       𝜎𝜎𝑃𝑃2 = � 𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗𝜎𝜎𝑖𝑖,𝑗𝑗 = ��
1
𝑁𝑁�

2

𝜎𝜎𝑖𝑖2 + � �
1
𝑁𝑁�

𝑁𝑁

𝑖𝑖,𝑗𝑗=1
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                                      =
1
𝑁𝑁𝜎𝜎�

2 +
𝑁𝑁 − 1
𝑁𝑁 𝜎𝜎�𝑖𝑖,𝑗𝑗,                                                       (1.20) 

 
where 𝜎𝜎�2 and 𝜎𝜎�𝑖𝑖,𝑗𝑗 are the average portfolio variance and covariance, respec-
tively. As N grows to infinity, the term (1/𝑁𝑁)𝜎𝜎�2 of equation (1.20) ap-
proaches zero. In other words, as N gets large the contribution of the vari-
ance of the individual stocks to the variance of the portfolio goes to zero. 
Therefore, the variance of a large portfolio does not depend on the individ-
ual risk of the securities, but only on their average covariance. Figures 1.1 
and 1.2, illustrate this result for the US and the Italian equity markets, re-
spectively. In the plots, the vertical axes indicate the risk of the portfolio as 
a percentage of the risk of an individual security. The horizontal axis repre-
sents the number of stocks included in the portfolio.8 
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8 The two figures were obtained as follows. For the US market, we collect monthly re-
turns for 2,237 stocks from CRSP (Center for Research on Security Prices) over a sample 
spanning the period December 1994 - December 2015 and compute their variance. 
Then, we randomly select N stocks (with N increasing from 1 to 60) and calculate the 
resulting portfolio standard deviation. We repeat the exercise 1,000 times and compute 
the average standard deviation of all portfolios composed by N stocks. The latter is then 
expressed as a percentage of the average standard deviation of a single stock, randomly 
picked. In the case of the Italian stock market, we perform the same exercise, but with 
a lower number of stocks to start from (60) and a higher number of simulations 
(10,000) to guarantee sufficient stability in variance estimates. In this case, monthly 
returns are collected with for the period January 2000 - April 2016. 

Figure 1.1 



20   ESSENTIALS OF APPLIED PORTFOLIO MANAGEMENT 
 

It is evident that in both cases the standard deviation of the portfolio sharply 
declines as we add the first 10 stocks, then it slowly converges towards the 
average covariance of the pool of stocks considered. Interestingly, the aver-
age covariance reduction is much larger for Italian stocks than for US stocks. 
Indeed, the total risk of a large portfolio of Italian stocks is equal to only 14% 
of the average risk of a single individual Italian stock, while the total risk of 
a US portfolio cannot be reduced below 35% of the average risk of an indi-
vidual security. Clearly, the more the stocks are uncorrelated, the lower the 
variance of a well-diversified portfolio will be. Indeed, the second term of 
equation (1.20), the average covariance, depends on the average correlation 
coefficient among stocks. If all the stocks were uncorrelated (the average 
correlation coefficient would be equal to zero), a well-diversified portfolio 
would show zero risk, as the second term of (1.20) would be zero as well. 
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Rearranging equation (1.20) helps us understand when a portfolio has 
reached the minimum possible variance: 
 

                                                    𝜎𝜎𝑃𝑃2 =
1
𝑁𝑁 �𝜎𝜎�

2 − 𝜎𝜎�𝑖𝑖,𝑗𝑗� + 𝜎𝜎�𝑖𝑖,𝑗𝑗                                 (1.21) 

 

Figure 1.2 
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When the difference between the average variance and the average covari-
ance of all stocks is equal to zero adding a new stock would not help to fur-
ther decrease the portfolio variance. Since it can be eliminated by holding a 
large number of stocks, the risk arising from individual securities is often 
called diversifiable risk and an investor should not be rewarded for taking it. 
We shall examine this concept again in chapter 5. 
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